Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis

Identifieur interne : 001798 ( Main/Repository ); précédent : 001797; suivant : 001799

Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis

Auteurs : RBID : Pascal:13-0002723

Descripteurs français

English descriptors

Abstract

Nickel-zinc oxide (Ni-ZnO) thin films were deposited onto glass and tin-doped indium oxide-coated glass substrates by using a pneumatic spray pyrolysis technique at 450 °C from aqueous solutions of zinc acetate and nickel acetate precursors. The effect of nickel doping on structural, morphological and optical properties of the ZnO thin films has been studied. The X-ray diffraction patterns confirmed the polycrystalline nature of the films having hexagonal crystal structure. Ni-ZnO films with appropriate nickel doping revealed the occurrence of novel wheel-like surface morphology. The absorption edge of the Ni-ZnO films showed a red shift, meaning that the optical band gap energy decreases as the nickel doping concentration increases. A growth model is developed and proposed for the novel wheel-like morphology. All the thin films exhibited room-temperature photoluminescence. Pure ZnO and Ni-ZnO thin films were tested for their photoelectrochemical performance in 0.5 M Na2SO4 electrolyte solution. The values of fill factor and open circuit voltage were improved for the Ni-ZnO thin films.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0002723

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis</title>
<author>
<name sortKey="Tarwal, N L" uniqKey="Tarwal N">N. L. Tarwal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Thin Film Materials Laboratory, Department of Physics, Shivaji University</s1>
<s2>Kolhapur 416 004, Maharashtra</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Kolhapur 416 004, Maharashtra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shinde, Ps" uniqKey="Shinde P">Ps. Shinde</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Thin Film Materials Laboratory, Department of Physics, Shivaji University</s1>
<s2>Kolhapur 416 004, Maharashtra</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Kolhapur 416 004, Maharashtra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oh, Y W" uniqKey="Oh Y">Y. W. Oh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Nano Engineering, Kyungnam University</s1>
<s2>Masan 631-701</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Masan 631-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cerc Korosec, Romana" uniqKey="Cerc Korosec R">Romana Cerc Korosec</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovénie</country>
<wicri:noRegion>1000 Ljubljana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patil, P S" uniqKey="Patil P">P. S. Patil</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Thin Film Materials Laboratory, Department of Physics, Shivaji University</s1>
<s2>Kolhapur 416 004, Maharashtra</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Kolhapur 416 004, Maharashtra</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0002723</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0002723 INIST</idno>
<idno type="RBID">Pascal:13-0002723</idno>
<idno type="wicri:Area/Main/Corpus">001516</idno>
<idno type="wicri:Area/Main/Repository">001798</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0947-8396</idno>
<title level="j" type="abbreviated">Appl. phys., A Mater. sci. process. : (Print)</title>
<title level="j" type="main">Applied physics. A, Materials science & processing : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption edge</term>
<term>Ambient temperature</term>
<term>Aqueous solutions</term>
<term>Crystal structure</term>
<term>Energy gap</term>
<term>Fill factor</term>
<term>Hexagonal lattices</term>
<term>IV characteristic</term>
<term>Impurity density</term>
<term>Indium oxide</term>
<term>Inorganic compounds</term>
<term>Microstructure</term>
<term>Nickel oxide</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Polycrystals</term>
<term>Spectral line shift</term>
<term>Spray coatings</term>
<term>Spray pyrolysis</term>
<term>Surface morphology</term>
<term>Thickness measurement</term>
<term>Thin films</term>
<term>Transition element compounds</term>
<term>Ultraviolet visible spectrum</term>
<term>XRD</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mesure épaisseur</term>
<term>Oxyde de zinc</term>
<term>Couche mince</term>
<term>Dépôt projection</term>
<term>Oxyde de nickel</term>
<term>Spectre UV visible</term>
<term>Caractéristique courant tension</term>
<term>Oxyde d'indium</term>
<term>Solution aqueuse</term>
<term>Propriété optique</term>
<term>Diffraction RX</term>
<term>Polycristal</term>
<term>Réseau hexagonal</term>
<term>Structure cristalline</term>
<term>Morphologie surface</term>
<term>Limite absorption</term>
<term>Déplacement raie</term>
<term>Bande interdite</term>
<term>Concentration impureté</term>
<term>Microstructure</term>
<term>Température ambiante</term>
<term>Photoluminescence</term>
<term>Facteur remplissage</term>
<term>Composé minéral</term>
<term>Composé de métal de transition</term>
<term>Ni</term>
<term>ZnO</term>
<term>8105K</term>
<term>Substrat verre</term>
<term>7855E</term>
<term>7866H</term>
<term>Pyrolyse par projection</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nickel-zinc oxide (Ni-ZnO) thin films were deposited onto glass and tin-doped indium oxide-coated glass substrates by using a pneumatic spray pyrolysis technique at 450 °C from aqueous solutions of zinc acetate and nickel acetate precursors. The effect of nickel doping on structural, morphological and optical properties of the ZnO thin films has been studied. The X-ray diffraction patterns confirmed the polycrystalline nature of the films having hexagonal crystal structure. Ni-ZnO films with appropriate nickel doping revealed the occurrence of novel wheel-like surface morphology. The absorption edge of the Ni-ZnO films showed a red shift, meaning that the optical band gap energy decreases as the nickel doping concentration increases. A growth model is developed and proposed for the novel wheel-like morphology. All the thin films exhibited room-temperature photoluminescence. Pure ZnO and Ni-ZnO thin films were tested for their photoelectrochemical performance in 0.5 M Na
<sub>2</sub>
SO
<sub>4</sub>
electrolyte solution. The values of fill factor and open circuit voltage were improved for the Ni-ZnO thin films.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0947-8396</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. phys., A Mater. sci. process. : (Print)</s0>
</fA03>
<fA05>
<s2>109</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TARWAL (N. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHINDE (Ps.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>OH (Y. W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CERC KOROSEC (Romana)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PATIL (P. S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Thin Film Materials Laboratory, Department of Physics, Shivaji University</s1>
<s2>Kolhapur 416 004, Maharashtra</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Nano Engineering, Kyungnam University</s1>
<s2>Masan 631-701</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>591-599</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16194A</s2>
<s5>354000502075480120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0002723</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics. A, Materials science & processing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nickel-zinc oxide (Ni-ZnO) thin films were deposited onto glass and tin-doped indium oxide-coated glass substrates by using a pneumatic spray pyrolysis technique at 450 °C from aqueous solutions of zinc acetate and nickel acetate precursors. The effect of nickel doping on structural, morphological and optical properties of the ZnO thin films has been studied. The X-ray diffraction patterns confirmed the polycrystalline nature of the films having hexagonal crystal structure. Ni-ZnO films with appropriate nickel doping revealed the occurrence of novel wheel-like surface morphology. The absorption edge of the Ni-ZnO films showed a red shift, meaning that the optical band gap energy decreases as the nickel doping concentration increases. A growth model is developed and proposed for the novel wheel-like morphology. All the thin films exhibited room-temperature photoluminescence. Pure ZnO and Ni-ZnO thin films were tested for their photoelectrochemical performance in 0.5 M Na
<sub>2</sub>
SO
<sub>4</sub>
electrolyte solution. The values of fill factor and open circuit voltage were improved for the Ni-ZnO thin films.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15R</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H55E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mesure épaisseur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thickness measurement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépôt projection</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Spray coatings</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxyde de nickel</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nickel oxide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Níquel óxido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Spectre UV visible</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ultraviolet visible spectrum</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espectro UV visible</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Solution aqueuse</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Aqueous solutions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>XRD</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Réseau hexagonal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Hexagonal lattices</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Limite absorption</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Absorption edge</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Ni</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8105K</s0>
<s4>INC</s4>
<s5>80</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>81</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7855E</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7866H</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Pyrolyse par projection</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Spray pyrolysis</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>007</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001798 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001798 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0002723
   |texte=   Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024